5.5 Solving Rational Inequalities

A Rational Inequalities

In order to solve a rational (nonlinear) inequality:

1. state restrictions
2. move all the terms to one side
3. find the LCD (Least Common Denominator) and simplify the rational expression
4. factor both the numerator and the denominator
5. find the sign of the rational expression by using a sign chart, graph or critical numbers method
6. conclude and verify if restrictions are satisfied

Ex 2. Solve the following inequalities:
a) $\frac{x+1}{x-1} \geq 0$
b) $\frac{x^{2}-1}{x-2} \leq 0$
c) $\frac{x^{2}+1}{x^{2}-4}>0$
d) $\frac{x^{3}+1}{x^{3}-1}<0$

Ex 1. Is possible to use cross multiplication to solve the following inequality? Explain. Solve it by using four different methods.
$\frac{1}{x} \leq \frac{2}{x+1}$

Ex 3. Solve the following inequalities:
a) $\frac{1}{x-1}>\frac{1}{x+1}$
b) $4 x-\frac{5}{x-1} \geq 2 x-1$
c) $\frac{4 x+5}{x^{2}} \geq \frac{4}{x+5}$
d) $\frac{x}{2 x-4}-\frac{3}{x-6} \leq \frac{1}{2}$

Ex 4. Solve the following inequality:	Ex 5. Solve the following inequality:
$\frac{x}{x-2}+\frac{1}{x-4} \geq \frac{2}{x^{2}-6 x+8}$	$\frac{5}{x} \leq \frac{6}{x-1}<\frac{x}{x-2}$

Reading: Nelson Textbook, Pages 288-295 Homework: Nelson Textbook, Page 295: \#4ab, 5acf, 7, 12, 13

